Cost-sensitive Learning for Bidding in Online Advertising Auctions

نویسندگان

  • Flavian Vasile
  • Damien Lefortier
چکیده

One of the most challenging problems in computational advertising is the prediction of ad click and conversion rates for bidding in online advertising auctions. State-ofthe-art prediction methods include using the maximum entropy framework (also known as logistic regression) and log linear models. However, one unaddressed problem in the previous approaches is the existence of highly non-uniform misprediction costs. In this paper, we present our approach for making cost-sensitive predictions for bidding in online advertising auctions. We show that one can get significant lifts in offline and online performance by using a simple modification of the logistic loss function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Offline Evaluation of Response Prediction in Online Advertising Auctions

Click-through rates and conversion rates are two core machine learning problems in online advertising. The evaluation of such systems is often based on traditional supervised learning metrics that ignore how the predictions are used. These predictions are in fact part of bidding systems in online advertising auctions. We present here an empirical evaluation of a metric that is specifically tail...

متن کامل

Online learning in repeated auctions

Motivated by online advertising auctions, we consider repeated Vickrey auctions where goods of unknown value are sold sequentially and bidders only learn (potentially noisy) information about a good’s value once it is purchased. We adopt an online learning approach with bandit feedback to model this problem and derive bidding strategies for two models: stochastic and adversarial. In the stochas...

متن کامل

LADDER: A Human-Level Bidding Agent for Large-Scale Real-Time Online Auctions

We present LADDER, the first deep reinforcement learning agent that can successfully learn control policies for largescale real-world problems directly from raw inputs composed of high-level semantic information. The agent is based on an asynchronous stochastic variant of DQN (Deep Q Network) named DASQN. The inputs of the agent are plain-text descriptions of states of a game of incomplete info...

متن کامل

Scalable Winner Determination in Advertising Auctions

Internet search results are a growing and highly profitable advertising platform. Search providers auction advertising slots to advertisers on their search result pages. Due to the high volume of searches and the users’ low tolerance for search result latency, it is imperative to resolve these auctions fast. Current approaches restrict the expressiveness of bids in order to achieve fast winner ...

متن کامل

Price Cycles in Online Advertising Auctions

Paid placement in search engines has become one of the most successful and rapidly growing sectors of the online advertising industry. The innovative use of auctions to sell keyword-related advertisement positions is perhaps the most important factor driving the success of this market. There has been no systematic analysis, however, of the advertisers’ strategies to bid for ranks in a dynamic e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1603.03713  شماره 

صفحات  -

تاریخ انتشار 2016